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Many algorithms for image processing do not require particularly high precision, but they rely on 
complicated arithmetic operations for every pixel in an image. The Bernsen algorithm is a typical local 
thresholding algorithm for solving the problem of uneven lighting. However, this algorithm requires 
a significant computing overhead and is extremely sensitive to noise. In this work, two stochastic 
computing architectures are proposed for implementing the Bernsen algorithm by using, respectively, 
uncorrelated and correlated input bitstreams. Experimental results show that both designs, especially 
the one using correlated bitstreams, present high fault tolerance of soft errors and low hardware cost 
in comparison with its conventional binary implementation. However, SC logic with uncorrelated 
inputs is not always superior to its corresponding binary circuit in energy consumption, especially the 
circuit that needs long input bitstreams. That means that a reasonable use of correlation can further 
optimize the SC circuit design. 

Keywords Bernsen algorithm, fault-tolerance, hardware cost, stochastic computing. 

1. Introduction 

In digital image processing, binarization algorithms significantly reduce the amount of data 
in an image, so the contour can readily be highlighted.1 Commonly used methods in image 
binarization algorithms are divided into global and local thresholding ones. The former is 
used when the target and background in an image are clearly separated, such as the Otsu 
algorithm and the average grey thresholding method;2 otherwise, the latter is usually 
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applied, such as the Bernsen algorithm3 and the Niblick algorithm.4 Generally, a global 
binarization algorithm is faster than a local one, although it results in inferior image 
qualities to the latter. 

Among these algorithms, the Bernsen algorithm is a typical local thresholding 
algorithm for solving the problem of uneven illumination, thus an important approach to 
image binarization.5 Since this algorithm requires complex computations for each pixel in 
a target image, the physical implementation of this algorithm results in a significant 
hardware cost. Meanwhile, the Bernsen algorithm is sensitive to noises, which can lead to 
a decrease in the accuracy of the output results. The noises include those caused by soft 
errors, triggered by the environment, or generated by voltage and thermal fluctuations, 
which may make the computation results deviate from the expected ones.6, 7 These issues 
above for the Bernsen algorithm can be potentially addressed by Stochastic Computing 
(SC). The main advantages of an SC-based design are low hardware cost and high fault 
tolerance for soft errors.8 The principle of SC uses a proportion of 1s in a stochastic 
bitstream to encode a target value9, so that a value in the numerical domain is mapped to 
the probabilistic domain, making it an approximate computation.10 

Compared with a conventional binary number, each bit in a stochastic bitstream has the 
same weight. Noises caused by bit flipping in a bitstream have a negligible impact on the 
computation accuracy, so SC improves the fault tolerance of circuits.11 Furthermore, SC 
uses simpler elements to implement complex operations than conventional binary circuits. 
This feature greatly reduces the hardware and power consumption in stochastic circuits. 
An architecture with low-power and fault-tolerance has been presented in SC for the kernel 
density estimation-based image segmentation algorithm.12 This work demonstrates the 
significant advantages of SC architecture in fault tolerance. A low-power and fault-tolerant 
stochastic architecture has been designed for the Sauvola algorithm.13 The literature 
designs an SC structure that can efficiently compute the mean of multiple inputs, while 
highlighting the low hardware overhead characteristics of SC circuits compared to 
traditional binary circuits. We have developed the deterministic Halton sequence (DHS)-
based stochastic number generators for the Bernsen algorithm.14 However, this method is 
not sufficient enough to highlight the strengths of SC in image processing. A hybrid bit-
splitting generator has been designed to produce parallel stochastic bitstreams to reduce 
delay, but the application of parallel technology in neural network applications results in a 
significant hardware overhead.15 A novel stochastic number generator has been presented 
to optimize stochastic multipliers for implementing the Izhikevich spiking neuron model.16 
However, the adoption of the Omega-flip structure results in a higher hardware cost. In the 
relevant literature above, the SC circuits designed require the use of uncorrelated input 
bitstreams. In this paper, the efficiency of bitstream correlation in this aspect through 
implementing the Bernsen algorithm in SC is comprehensively explored, by comparing 
two scenarios. 

In this paper, we propose two stochastic circuits for the Bernsen algorithm. The main 
contributions include 1. High-accuracy and low-cost stochastic circuits using, respectively, 
uncorrelated and correlated stochastic input bitstreams are proposed. The impacts of LD 
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sequence and LFSR on the accuracy, hardware overhead, and fault tolerance of Bernsen 
circuits under correlated and uncorrelated logic are analyzed. The experimental results 
verify that the reasonable use of correlation can greatly improve the performance of SC 
circuits. 2. A decoder that can simplify the proposed stochastic Bernsen circuits is designed. 
The proposed decoder can directly convert the logical value into binary numbers, and there 
is no need to convert to stochastic bitstreams. This paper proceeds as follows. Sec. 2 
introduces the background for the Bernsen algorithm and stochastic computing. Sec. 3 
presents the proposed stochastic circuits for the Bernsen algorithm. Sec. 4 reports the 
experiments and results. Sec. 5 concludes this paper. 

2. Background 

2.1. Bernsen Algorithm 

In the local thresholding Bernsen algorithm, for a pixel value indexed by its coordinate (i,j), 
f(i,j), the mean value or threshold T(i,j), is computed by considering the maximum and 
minimum pixel values in a (2k+1)×(2k+1) window centered on f(i,j) as 

 ( )
( ) ( )
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max , min ,

,
2

k x y kk x y k
f i x j y f i x j y
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+ + + + +
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where k is a positive integer as the radius of the selected window. 
The maximum and minimum pixel values in a selected window are denoted as M and 

N respectively, and A is the difference between M and N. The parameters S and tt are 
thresholds to control the gray level difference in the selected window. The values of these 
two parameters are not set in stone, different values can accordingly be selected according 
to the specific required output results. If A≥S, it means that the gray level in the selected 
window has a large difference, thus a further comparison between f(i,j) and T(i,j) is required. 
Otherwise, tt is directly compared with T(i,j). Fig. 1 shows a schematic for computing the 
mean value T(i,j) and the difference A for the Bernsen algorithm. 

 

 

Fig. 1. A schematic for computing the mean value and the difference. 
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2.2. Stochastic Computing 

Two encoding methods are widely used in SC, the unipolar and bipolar formats.8 In the 
unipolar representation, the probability of 1s occurring in a bitstream represents a real value 
x; for example, a bitstream Sx=00010111 encodes x=P(Sx)=4/8=0.5. The position of 1s in 
a bitstream is not fixed, which allows a value to have different bitstream forms. Bitstream 
Sx’=11100001 can also represent 0.5. Numbers in the unipolar representation range in [0,1], 
while they range in [−1,+1] in the bipolar representation. A real value in the bipolar 
representation is interpreted as x=2P(Sx)-1, so the same bitstream Sx=00010111 encodes 
x=2P(Sx)-1=0. Thus, both positive and negative real values can be encoded in the bipolar 
representation.8 In this paper, x is indiscriminately used to represent both a real value and 
the bitstream for representing it. 

Simple logic gates using stochastic bitstreams enable low-cost circuits to implement 
complex arithmetic functions. However, for a logic gate, the correlation between bitstreams 
that represent the same values could make it present different logical functions.17 This 
property is called Stochastic Computing Correlation. Intuitively speaking, if the 1s of 
bitstreams overlap with each other to the greatest extent, then these bitstreams can be 
referred to as having the maximal positive correlation, and if the 1s of bitstreams almost 
do not overlap with each other, they can be referred to as having the maximal negative 
correlation. If the 1s of bitstreams randomly overlap with each other, then they are ideal 
stochastic bitstreams, or they can be called uncorrelated bitstreams. 

 

Fig. 2. Stochastic elements with different input bitstreams. 
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Fig. 3. The binarization results under different Bernsen parameters. 

In unipolar representation, while two input bitstreams are uncorrelated, an AND gate 
performs as a stochastic multiplier. For example, two input bitstreams A=01101001 and 
B=11011011 respectively represent values P(A)=4/8, P(B)=6/8, and its output bitstream is 
C=01001001 representing value P(C)=3/8, so satisfying C=A×B. An OR gate can achieve 
the function of C=A+B–A×B. An XOR gate implements the function C=A+B–2A×B. While 
two inputs are maximally correlated, an AND gate can achieve the function of calculating 
the minimum value, an OR gate can achieve the function of calculating the maximum value, 
and an XOR gate can be used as an absolute value subtractor.18 A multiplexer or MUX 
with a select signal set to ½ realizes the function of mixing two stochastic bitstreams, 
resulting in a scaled adder.8 The inputs of MUX can be correlated or not, while the select 
bitstream must be uncorrelated with the inputs. It is worth noting that the MUX completes 
an addition operation of inputs A and B for both unipolar and bipolar representations. The 
corresponding examples are shown in Fig. 2. 

3. The proposed circuits for Bernsen algorithm 

In this section, two stochastic architectures are proposed for implementing the Bernsen 
algorithm by respectively using uncorrelated and correlated input bitstreams. For an image, 
it is necessary to normalize all pixels ranging from [0, 255] to [0, 1] when implementing 
the algorithm in SC. 

3.1. Bernsen Parameters 

Three important parameters should be preset to implement the Bernsen algorithm: the 
parameters S and tt, and the selected window size (2k+1)×(2k+1). Parameter tt adopts the 
preset value of 128 in the Bernsen algorithm. The parameter S and the selected window 
size (2k+1)×(2k+1) will have varying degrees of impact on the results. For the Bernsen 
algorithm, the window size has a significant impact on results: the larger the selected 
window size is, the higher the accuracy. If the selected window size is too large, however, 
it may not further improve the quality of processed images and will cause additional costs.13 
The results are shown in Fig. 3 for the Bernsen algorithm processing gray-scale images 
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under different window sizes. Experiments show that the algorithm using a 5×5 window 
size achieves acceptable binarized results and requires modest computation. Thus, a 5×5 
window size is adopted in this paper, by comprehensively considering the computing 
accuracy and computation cost. 

3.2. Design Process 

According to the Bernsen algorithm described in Sec. 2 and the selected window size 
described above, the stochastic architectures are realized in the following three steps, 
1. Computing the maximum and minimum pixel values M and N in a selected window, 

respectively. The adopted window F is shown in Fig. 4. Thus, the maximum pixel 
value can be written as, 

 { }max .M = F  (2) 

The minimum pixel value can be written as, 

 { }min .N = F  (3) 

2. Computing the mean T and the difference A between the maximum and minimum pixel 
values, respectively. The mean value can be computed as, 

 .
2

M NT +
=  (4) 

The difference value can be computed as, 

 .A M N= −  (5) 

 

Fig. 4. The diagram of a selected window F. 
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Fig. 5. The proposed stochastic circuit using uncorrelated input bitstreams for the Bernsen algorithm. 

3. Generating output pixel values. 
These three computation steps involve maximum, minimum, addition, and subtraction 
operations, respectively. Based on the computation steps in subsection 3.2 and the 
parameters identified in subsection 3.3, we design the SC circuits for the Bernsen algorithm 
in the next. 

3.3. The Proposed Circuit using Uncorrelated Bitstreams 

We propose a stochastic circuit for implementing the Bernsen algorithm by using 
uncorrelated input bitstreams. Fig. 5 shows the proposed stochastic circuit. Independent 
stochastic number generators (SNG) are used to generate uncorrelated bitstreams. The 
SNG consists of a random number generator (RNG) and a comparator (CMP). The linear 
feedback shift register (LFSR) has the advantage of low hardware complexity, making it 
an extensively used RNG. The Low-discrepancy bitstreams based on Sobol sequence19 and 
Halton sequence20 have been introduced for SC design. These three different random 
sequences are used to generate bitstreams in this paper. 

3.3.1. Maximum and Minimum 
Because a 5×5 window size is selected, 25 input bitstreams are needed to compute M and 
N. A stochastic max (Smax) function circuit21 that is composed of an XOR gate, a 
multiplexer, and a stochastic Tanh structure can compute the max one in two uncorrelated 
bitstreams. This circuit is used in the proposed stochastic Bernsen structure. A Smax has 
two inputs, one of which is connected to pixel f(i,j), and the other is connected to the other 
24 pixels in sequence so that M in a selected window can be computed. Pixel f(i,j) is 
conveniently denoted as f1, and the remaining 24 pixels are represented as f2, f3... f25 in turn. 
A Smin structure for computing N is obtained by changing the connection of 0 and 1 in the 
MUX in the stochastic Tanh structure. 
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3.3.2. Mean and Difference 
The mean T and the difference A between the maximum and minimum pixel values in a 
selected window are respectively computed. A MUX with a fixed select input ½ can 
compute the mean of two bitstreams, such as the mean of M and N is (M+N)/2. The 
difference A relates to a stochastic subtraction that requires a NOT gate to implement 
negation in bipolar representation. A MUX with a logically inverted input can realize the 
difference between the maximum and minimum, as (M-N)/2, and bipolar format 
representation is needed here. A MUX-based subtractor cannot directly compute the 
difference between M and N, thus a scaled version result is adopted here. 

3.3.3. Generating Output Pixel Values 
This process needs to be implemented with a stochastic comparator. A stochastic 
comparator22 produces less accurate bitstreams approximately representing 0 or 1, and then 
the bitstreams need to be converted to binary numbers. A comparator13 has the ability to 
produce more accurate results, which the results also need to be converted into binary 
numbers. We propose a method that can directly output real binary pixel values, by using 
the two preset parameters S and tt and considering the principle of the Bernsen algorithm. 
Suppose the length of input bitstreams is 255, set S and tt to be 40 and 128 as discussed 
previously. By mapping them to [0,1], they become 40/255 and 128/255, then multiplying 
the length of the input bitstreams, so 40 and 128 1s can respectively be counted. If the 
difference A is larger than S, that is, the number of 1s in the bitstream A is greater than 40, 
the comparison result X is logically true, as shown in Fig. 5. To compare f1 and T, up/down 
counter is used. The result Y indicates whether f1 is larger than T or not. Similarly, tt and T 
are also compared in the same way. Therefore, the comparison results are determined by 
the logical values of X, Y, and Z. Table 1 shows the truth table for the output pixel value 
according to X, Y, Z. The proposed method directly converts the logical value into binary 
numbers, and there is no need to convert to stochastic bitstreams. Compared with the two 
stochastic comparators above, the proposed one is easy to be designed and significantly 
lowers the hardware cost of the circuit. 

Table 1. The truth table of output pixel value obtained by X, Y, Z 

X Y Z Output 

1 1 x 1 
1 0 x 0 
0 x 1 1 
0 x 0 0 
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Fig. 6. The proposed stochastic circuit using correlated input bitstreams for the Bernsen algorithm. 

3.4. The Proposed Circuit using Correlated Bitstreams 

The correlation between stochastic bitstreams will affect the accuracy of stochastic circuits 
so that most stochastic circuits require uncorrelated bitstreams to perform computation. 
However, the appropriate use of correlation enables stochastic basic units to realize new 
logic functions, which can further simplify the structures of stochastic circuits. Therefore, 
in this subsection, we propose a stochastic architecture for the Bernsen algorithm by using 
correlated bitstreams as shown in Fig. 6. By directly sharing an RNG, bitstreams with the 
maximal correlation can be obtained, which can further reduce the hardware cost of the 
stochastic circuit. 

3.4.1. Maximum and Minimum 
A stochastic AND gate serving as a multiplier reduces its hardware cost and simplifies 
logic, compared with traditional methods to realize a multiplier. The prerequisite for that 
is that its input bitstreams must be highly uncorrelated. An AND gate using correlated 
inputs will result in the minimum among two inputs. An OR gate using correlated 
bitstreams can get the maximum among two inputs. Hence, the maximum and minimum 
pixel values M and N in a selected window can be computed by using simple logic gates in 
the proposed stochastic circuit. 

3.4.2. Mean and Difference 
The mean T and the difference A between M and N are computed in this step. Similarly, a 
MUX can implement the function of averaging M and N. It should be noted that, although 
input bitstreams are generated by sharing an RNG directly in this method, a separate RNG 
is provided for generating the select bitstream to ensure the MUX accurately computes the 
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average of two bitstreams. An XOR gate can realize the function C=|A-B| when the input 
bitstreams have the maximum correlation. Therefore, an XOR gate is used as an absolute 
value subtractor to compute the difference A between M and N in this method to implement 
the Bernsen algorithm. 

3.4.3. Generating Output Pixel Values 
The method to generate output pixel values is the same as the proposed one using 
uncorrelated bitstreams. 

In summary, the output bitstreams processed by the AND gate and the OR gate still are 
the original bitstreams generated by an RNG, so they have the maximum correlation. 
Therefore, the XOR gate also accurately computes results. That is, the entire computing 
process of this circuit from the initial inputs to the XOR gate is error-free. Consequently, 
the Bernsen algorithm is suitable to be implemented by using correlated bitstreams. 

4. Experiment and results 

In this section, the performance of the proposed circuits will be compared and described 
through different dimensions such as accuracy, hardware resource consumption, and fault 
tolerance. Accuracy is described by computing the error rate of the circuit output results. 
The hardware resource consumption is evaluated by comparing the area, power 
consumption, latency, and other data of Bernsen circuits implemented in different ways. 
The fault tolerance performance of the circuits is proved by detecting its error rate under 
input noises. MATLAB and Verilog hardware description languages are used to simulate 
and evaluate the accuracy of the proposed stochastic circuits. All circuits are synthesized 
by Synopsys Design Compiler and TSMC 40nm standard cell library at a frequency of 
100MHz and a typical corner. 

Table 2. The accuracy of the conventional and stochastic circuits for the Bernsen algorithm under different 
bitstream lengths (%) 

Length 4-bit 5-bit 6-bit 7-bit 8-bit 
Conventional 30.85 29.68 9.28 3.72 0 

SC 

Length 256-bit 512-bit 1024-bit 2048-bit 4096-bit 

Uncorrelated 

LFSR 21.90 13.52 6.97 3.93 2.20 

Halton 21.74 13.50 6.91 3.89 2.19 

Sobol 21.62 13.07 6.20 3.78 2.19 

Length 8-bit 16-bit 32-bit 64-bit 128-bit 

Correlated 

LFSR 5.50 2.36 1.12 0.62 0.32 

Halton 4.38 2.17 1.12 0.52 0.31 

Sobol 4.33 2.01 0.71 0.38 0.15 
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4.1. Accuracy 

To compare the accuracy of the proposed stochastic circuits, the average output error rate 
is computed as 

 , ,

1 1
100%.

H W
i j i j

i j

T E
Error

H W= =

−
= ×

⋅∑∑  (6) 

where H and W represent the height and width of an image to be processed, T and E are the 
theoretical results and corresponding experiment results, respectively. The conventional 
circuit is simulated using 4-, 5-, 6-, 7-, 8-bit binary numbers. For stochastic circuits, LFSRs 
will cause fluctuating results, so 1000 trials of the Monte Carlo experiment are simulated 
and then their average is recorded. Table 2 shows the accuracy of the proposed stochastic 
architectures under various lengths of bitstreams. 

For most digital processing algorithms, errors less than 5% that would not be observed 
by human eyes can be tolerated up for computation results.23 The data in Table 2 indicates 
that the minimum precision for the conventional binary approach to achieve the acceptable 
error rate is 7-bit. The stochastic design using uncorrelated inputs requires 2048-bitstreams 
to make the output results acceptable. Meanwhile, the one using correlated inputs generated 
with 8-bit streams can produce almost acceptable results. 

The main reason for this is that the proposed stochastic circuits have different structures 
for calculating the maximum and minimum values for the selected window. Specifically, 
the uncorrelated method uses a Smax structure to find the maximum and minimum values 
that require a longer sequence to generate results. The correlated method using an AND 
gate and an OR gate achieves the same function even with more accurate results by taking 
advantage of the correlation between bitstreams. 

4.2. Hardware Resource Consumption 

The proposed stochastic circuits are tested by synthesizing with various lengths of 
bitstreams, and then compared in terms of their hardware performance to a conventional 
circuit. Their area, power consumption, critical path delay, and total delay are shown in 
Table 3. For the stochastic circuit using uncorrelated bitstreams, since acceptable results 
are obtained when 2048-bit streams are used as input, only experimental results using 
2048-bit streams are presented. The results of conventional binary circuits and other 
proposed stochastic circuits are fully presented with different precisions. 

Compared with the conventional 8-bit precision circuit, the LFSR-based stochastic 
circuit with uncorrelated bitstreams has a 76.2% improvement in area and 75.2% in power. 
The one with correlated bitstreams has a 96.5% improvement in area, 96.3% in power, and 
69.5% in critical path delay when 8-bit LFSR streams are used. When 128-bit LFSRs are 
used, the circuit has a 91.9% improvement in area, 92.3% in power, and 42.0% in critical 
path delay. Compared with the LFSR-based design, the Halton- and Sobol-based 
approaches have higher hardware overhead. The hardware resource consumption of the 
correlated Sobol-based design is higher than that of the conventional 8-bit precision design. 
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Table 3. Performance comparison of the proposed stochastic circuits and conventional circuits for the Bernsen 

algorithm 

M
et

ho
d 

Length 
(bit) 

Area 
(um2) 

Power 
(uW) 

Critical 
path 
delay 
(ns) 

Delay 
(ns) 

ADP 
(um2×ns) 

PDP  
(10-3 pJ) 

C
on

ve
nt

io
na

l 4 1368.51 116.64 0.94 0.94 1286.40 109.64 

5 1745.12 137.68 0.95 0.95 1657.86 130.80 

6 2127.91 161.18 1.05 1.05 2234.31 169.24 

7 2490.42 180.39 1.13 1.13 2814.17 203.84 

8 2865.27 196.24 1.31 1.31 3,753.50 257.07 

U
nc

or
re

l
at

ed
 LFSR 2048 680.73 48.69 1.64 24×1.64×211 54873155.28 3924865.84 

Halton 2048 2105.51 117.11 2.45 24×2.45×211 253550567.42 14102667.26 

Sobol 2048 3233.59 349.20 2.85 24×2.85×211 452971634.69 48917053.44 

C
or

re
la

te
d 

LFSR 

8 101.07 7.30 0.40 0.40×23 323.42 23.36 

16 134.24 9.33 0.48 0.48×24 1030.96 71.65 

32 166.17 11.90 0.58 0.58×25 3084.12 220.86 

64 206.04 13.83 0.65 0.65×26 8571.26 575.33 

128 231.96 15.13 0.76 0.76×27 22565.07 1471.85 

Halton 

8 289.83 31.72 0.67 0.67×23 1553.49 170.02 

16 400.43 34.99 0.78 0.78×24 4997.37 436.68 

32 551.78 39.61 1.05 1.05×25 18539.81 1330.90 

64 637.33 41.38 1.19 1.19×26 48539.05 3151.50 

128 821.14 45.81 1.45 1.45×27 152403.58 8502.34 

Sobol 

8 339.46 37.81 0.67 0.67×23 1819.51 202.66 

16 491.98 49.37 0.79 0.79×24 6218.63 624.04 

32 683.55 63.12 0.89 0.89×25 19467.50 1797.66 

64 886.23 79.94 1.23 1.23×26 69764.03 6292.88 

128 1102.15 98.50 1.74 1.74×27 245470.85 21937.92 

Table 4. The average output error of the proposed and conventional circuits versus injected noise levels (%) 

Noise Levels Length 0 2 5 10 15 20 30 

Conventional - 0.0 26.19 35.70 38.19 39.39 40.88 43.09 

Uncorrelated 2048-bit 3.9 4.1 4.2 4.3 4.7 6.6 14.1 

Correlated 

8-bit 5.5 5.5 5.5 9.9 10.2 10.3 25.6 
16-bit 2.4 2.4 4.6 6.8 7.1 8.9 20.4 
32-bit 1.1 1.6 4.4 5.0 6.8 7.8 10.6 
64-bit 0.6 1.3 2.7 4.6 5.8 7.2 9.2 
128-bit 0.3 1.0 2.2 4.4 5.6 6.7 8.5 
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Fig. 7. Fault-tolerance comparison of the proposed stochastic circuits and conventional circuits for the Bernsen 
algorithm. 
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Since stochastic circuits require long bitstreams, their delay is larger than that of the 
conventional circuit. As shown in Table 3, Area Delay Product (ADP), and Power Delay 
Product (PDP) of the aforementioned three types of circuits are compared. The proposed 
LFSR-based stochastic circuit using correlated bitstreams enjoys lower ADP, and PDP than 
the conventional one until 64-bit streams are used. However, the circuit designed with 
uncorrelated inputs has a much higher energy consumption compared to its corresponding 
binary circuit. The comparison of the two proposed circuits for the Bernsen algorithms 
indicates that the correlation should be paid more attention to circuit design. Speaking 
cautiously, these results, again, illustrate that the circuit designed using correlated 
bitstreams is more suitable for implementing the Bernsen algorithm. 

4.3. Fault Tolerance 

Soft errors can be approximated by flipping input bits independently and randomly. For 
example, if a length of 1000-bitstream is injected for 5% noise, then 50 bits are randomly 
selected and flipped. By injecting different error rates into input bitstreams in this way to 
evaluate the fault tolerance of the proposed stochastic architectures. As the data shown in 
Table 2, the accuracy of the LFSR-based approach is slightly inferior to that of the other 
two SC approaches. However, it has advantages in hardware overhead. The 8-bit precision 
conventional design and LFSR-based design are compared, and the processed images are 
shown in Fig. 7. The results dealing with different noise levels are numerically shown in 
Table 4. It can be seen that the proposed stochastic circuits have better fault tolerance than 
the conventional circuit. 

5. Conclusion 

In this paper, two stochastic architectures are proposed for implementing the Bernsen 
algorithm, and these circuits are evaluated through hardware implementations and 
computing accuracy. A new method to generate output pixel values and concurrently 
convert them to binary values is also proposed to effectively reduce the resource 
consumption of the proposed stochastic circuits. Experimental results show that the 
proposed stochastic circuits outperform their conventional binary circuits in terms of area 
and fault tolerance. Specifically, the one using uncorrelated input bitstreams has low 
performance in energy efficiency, while the one using correlated input bitstreams produces 
higher accuracy and lower hardware costs. It demonstrates that simpler and more efficient 
stochastic circuits can be designed by using correlated bitstreams for certain logic functions. 
In future work, we will further explore the impact of bitstream correlation on SC. 
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