
Journal of Circuits, Systems, and Computers
 World Scientific Publishing Company

1

A Low-Cost and Fault-Tolerant Stochastic Architecture for The Bernsen Algorithm
Using Bitstream Correlation

Shaowei Wang†, Guangjun Xie‡, Wenbing Xu§, Yongqiang Zhang||

School of Microelectronics,
Hefei University of Technology,

Hefei, Anhui, 230009, P.R. China
†2019010121@mail.hfut.edu.cn

‡gjxie8005@hfut.edu.cn
§wbxu@mail.hfut.edu.cn
||ahzhangyq@hfut.edu.cn

Jie Han

Department of Electrical and Computer Engineering,
University of Alberta, Edmonton,
Edmonton, AB, T6G1H9, Canada

jhan8@ualberta.ca

Received (25 March 2022)
Revised (7 September 2023)

Accepted (23 November 2023)

Many algorithms for image processing do not require particularly high precision, but they rely on
complicated arithmetic operations for every pixel in an image. The Bernsen algorithm is a typical local
thresholding algorithm for solving the problem of uneven lighting. However, this algorithm requires
a significant computing overhead and is extremely sensitive to noise. In this work, two stochastic
computing architectures are proposed for implementing the Bernsen algorithm by using, respectively,
uncorrelated and correlated input bitstreams. Experimental results show that both designs, especially
the one using correlated bitstreams, present high fault tolerance of soft errors and low hardware cost
in comparison with its conventional binary implementation. However, SC logic with uncorrelated
inputs is not always superior to its corresponding binary circuit in energy consumption, especially the
circuit that needs long input bitstreams. That means that a reasonable use of correlation can further
optimize the SC circuit design.

Keywords Bernsen algorithm, fault-tolerance, hardware cost, stochastic computing.

1. Introduction

In digital image processing, binarization algorithms significantly reduce the amount of data
in an image, so the contour can readily be highlighted.1 Commonly used methods in image
binarization algorithms are divided into global and local thresholding ones. The former is
used when the target and background in an image are clearly separated, such as the Otsu
algorithm and the average grey thresholding method;2 otherwise, the latter is usually

2 Shaowei Wang et al.

applied, such as the Bernsen algorithm3 and the Niblick algorithm.4 Generally, a global
binarization algorithm is faster than a local one, although it results in inferior image
qualities to the latter.

Among these algorithms, the Bernsen algorithm is a typical local thresholding
algorithm for solving the problem of uneven illumination, thus an important approach to
image binarization.5 Since this algorithm requires complex computations for each pixel in
a target image, the physical implementation of this algorithm results in a significant
hardware cost. Meanwhile, the Bernsen algorithm is sensitive to noises, which can lead to
a decrease in the accuracy of the output results. The noises include those caused by soft
errors, triggered by the environment, or generated by voltage and thermal fluctuations,
which may make the computation results deviate from the expected ones.6, 7 These issues
above for the Bernsen algorithm can be potentially addressed by Stochastic Computing
(SC). The main advantages of an SC-based design are low hardware cost and high fault
tolerance for soft errors.8 The principle of SC uses a proportion of 1s in a stochastic
bitstream to encode a target value9, so that a value in the numerical domain is mapped to
the probabilistic domain, making it an approximate computation.10

Compared with a conventional binary number, each bit in a stochastic bitstream has the
same weight. Noises caused by bit flipping in a bitstream have a negligible impact on the
computation accuracy, so SC improves the fault tolerance of circuits.11 Furthermore, SC
uses simpler elements to implement complex operations than conventional binary circuits.
This feature greatly reduces the hardware and power consumption in stochastic circuits.
An architecture with low-power and fault-tolerance has been presented in SC for the kernel
density estimation-based image segmentation algorithm.12 This work demonstrates the
significant advantages of SC architecture in fault tolerance. A low-power and fault-tolerant
stochastic architecture has been designed for the Sauvola algorithm.13 The literature
designs an SC structure that can efficiently compute the mean of multiple inputs, while
highlighting the low hardware overhead characteristics of SC circuits compared to
traditional binary circuits. We have developed the deterministic Halton sequence (DHS)-
based stochastic number generators for the Bernsen algorithm.14 However, this method is
not sufficient enough to highlight the strengths of SC in image processing. A hybrid bit-
splitting generator has been designed to produce parallel stochastic bitstreams to reduce
delay, but the application of parallel technology in neural network applications results in a
significant hardware overhead.15 A novel stochastic number generator has been presented
to optimize stochastic multipliers for implementing the Izhikevich spiking neuron model.16
However, the adoption of the Omega-flip structure results in a higher hardware cost. In the
relevant literature above, the SC circuits designed require the use of uncorrelated input
bitstreams. In this paper, the efficiency of bitstream correlation in this aspect through
implementing the Bernsen algorithm in SC is comprehensively explored, by comparing
two scenarios.

In this paper, we propose two stochastic circuits for the Bernsen algorithm. The main
contributions include 1. High-accuracy and low-cost stochastic circuits using, respectively,
uncorrelated and correlated stochastic input bitstreams are proposed. The impacts of LD

 A Low-Cost and Fault-Tolerant Stochastic Architecture for The Bernsen Algorithm 3

sequence and LFSR on the accuracy, hardware overhead, and fault tolerance of Bernsen
circuits under correlated and uncorrelated logic are analyzed. The experimental results
verify that the reasonable use of correlation can greatly improve the performance of SC
circuits. 2. A decoder that can simplify the proposed stochastic Bernsen circuits is designed.
The proposed decoder can directly convert the logical value into binary numbers, and there
is no need to convert to stochastic bitstreams. This paper proceeds as follows. Sec. 2
introduces the background for the Bernsen algorithm and stochastic computing. Sec. 3
presents the proposed stochastic circuits for the Bernsen algorithm. Sec. 4 reports the
experiments and results. Sec. 5 concludes this paper.

2. Background

2.1. Bernsen Algorithm

In the local thresholding Bernsen algorithm, for a pixel value indexed by its coordinate (i,j),
f(i,j), the mean value or threshold T(i,j), is computed by considering the maximum and
minimum pixel values in a (2k+1)×(2k+1) window centered on f(i,j) as

 ()
() ()

,,
max , min ,

,
2

k x y kk x y k
f i x j y f i x j y

T i j − ≤ ≤− ≤ ≤
+ + + + +

= ， (1)

where k is a positive integer as the radius of the selected window.
The maximum and minimum pixel values in a selected window are denoted as M and

N respectively, and A is the difference between M and N. The parameters S and tt are
thresholds to control the gray level difference in the selected window. The values of these
two parameters are not set in stone, different values can accordingly be selected according
to the specific required output results. If A≥S, it means that the gray level in the selected
window has a large difference, thus a further comparison between f(i,j) and T(i,j) is required.
Otherwise, tt is directly compared with T(i,j). Fig. 1 shows a schematic for computing the
mean value T(i,j) and the difference A for the Bernsen algorithm.

Fig. 1. A schematic for computing the mean value and the difference.

4 Shaowei Wang et al.

2.2. Stochastic Computing

Two encoding methods are widely used in SC, the unipolar and bipolar formats.8 In the
unipolar representation, the probability of 1s occurring in a bitstream represents a real value
x; for example, a bitstream Sx=00010111 encodes x=P(Sx)=4/8=0.5. The position of 1s in
a bitstream is not fixed, which allows a value to have different bitstream forms. Bitstream
Sx’=11100001 can also represent 0.5. Numbers in the unipolar representation range in [0,1],
while they range in [−1,+1] in the bipolar representation. A real value in the bipolar
representation is interpreted as x=2P(Sx)-1, so the same bitstream Sx=00010111 encodes
x=2P(Sx)-1=0. Thus, both positive and negative real values can be encoded in the bipolar
representation.8 In this paper, x is indiscriminately used to represent both a real value and
the bitstream for representing it.

Simple logic gates using stochastic bitstreams enable low-cost circuits to implement
complex arithmetic functions. However, for a logic gate, the correlation between bitstreams
that represent the same values could make it present different logical functions.17 This
property is called Stochastic Computing Correlation. Intuitively speaking, if the 1s of
bitstreams overlap with each other to the greatest extent, then these bitstreams can be
referred to as having the maximal positive correlation, and if the 1s of bitstreams almost
do not overlap with each other, they can be referred to as having the maximal negative
correlation. If the 1s of bitstreams randomly overlap with each other, then they are ideal
stochastic bitstreams, or they can be called uncorrelated bitstreams.

Fig. 2. Stochastic elements with different input bitstreams.

 A Low-Cost and Fault-Tolerant Stochastic Architecture for The Bernsen Algorithm 5

Fig. 3. The binarization results under different Bernsen parameters.

In unipolar representation, while two input bitstreams are uncorrelated, an AND gate
performs as a stochastic multiplier. For example, two input bitstreams A=01101001 and
B=11011011 respectively represent values P(A)=4/8, P(B)=6/8, and its output bitstream is
C=01001001 representing value P(C)=3/8, so satisfying C=A×B. An OR gate can achieve
the function of C=A+B–A×B. An XOR gate implements the function C=A+B–2A×B. While
two inputs are maximally correlated, an AND gate can achieve the function of calculating
the minimum value, an OR gate can achieve the function of calculating the maximum value,
and an XOR gate can be used as an absolute value subtractor.18 A multiplexer or MUX
with a select signal set to ½ realizes the function of mixing two stochastic bitstreams,
resulting in a scaled adder.8 The inputs of MUX can be correlated or not, while the select
bitstream must be uncorrelated with the inputs. It is worth noting that the MUX completes
an addition operation of inputs A and B for both unipolar and bipolar representations. The
corresponding examples are shown in Fig. 2.

3. The proposed circuits for Bernsen algorithm

In this section, two stochastic architectures are proposed for implementing the Bernsen
algorithm by respectively using uncorrelated and correlated input bitstreams. For an image,
it is necessary to normalize all pixels ranging from [0, 255] to [0, 1] when implementing
the algorithm in SC.

3.1. Bernsen Parameters

Three important parameters should be preset to implement the Bernsen algorithm: the
parameters S and tt, and the selected window size (2k+1)×(2k+1). Parameter tt adopts the
preset value of 128 in the Bernsen algorithm. The parameter S and the selected window
size (2k+1)×(2k+1) will have varying degrees of impact on the results. For the Bernsen
algorithm, the window size has a significant impact on results: the larger the selected
window size is, the higher the accuracy. If the selected window size is too large, however,
it may not further improve the quality of processed images and will cause additional costs.13
The results are shown in Fig. 3 for the Bernsen algorithm processing gray-scale images

6 Shaowei Wang et al.

under different window sizes. Experiments show that the algorithm using a 5×5 window
size achieves acceptable binarized results and requires modest computation. Thus, a 5×5
window size is adopted in this paper, by comprehensively considering the computing
accuracy and computation cost.

3.2. Design Process

According to the Bernsen algorithm described in Sec. 2 and the selected window size
described above, the stochastic architectures are realized in the following three steps,
1. Computing the maximum and minimum pixel values M and N in a selected window,

respectively. The adopted window F is shown in Fig. 4. Thus, the maximum pixel
value can be written as,

 { }max .M = F (2)

The minimum pixel value can be written as,

 { }min .N = F (3)

2. Computing the mean T and the difference A between the maximum and minimum pixel
values, respectively. The mean value can be computed as,

 .
2

M NT +
= (4)

The difference value can be computed as,

 .A M N= − (5)

Fig. 4. The diagram of a selected window F.

 A Low-Cost and Fault-Tolerant Stochastic Architecture for The Bernsen Algorithm 7

Fig. 5. The proposed stochastic circuit using uncorrelated input bitstreams for the Bernsen algorithm.

3. Generating output pixel values.
These three computation steps involve maximum, minimum, addition, and subtraction
operations, respectively. Based on the computation steps in subsection 3.2 and the
parameters identified in subsection 3.3, we design the SC circuits for the Bernsen algorithm
in the next.

3.3. The Proposed Circuit using Uncorrelated Bitstreams

We propose a stochastic circuit for implementing the Bernsen algorithm by using
uncorrelated input bitstreams. Fig. 5 shows the proposed stochastic circuit. Independent
stochastic number generators (SNG) are used to generate uncorrelated bitstreams. The
SNG consists of a random number generator (RNG) and a comparator (CMP). The linear
feedback shift register (LFSR) has the advantage of low hardware complexity, making it
an extensively used RNG. The Low-discrepancy bitstreams based on Sobol sequence19 and
Halton sequence20 have been introduced for SC design. These three different random
sequences are used to generate bitstreams in this paper.

3.3.1. Maximum and Minimum
Because a 5×5 window size is selected, 25 input bitstreams are needed to compute M and
N. A stochastic max (Smax) function circuit21 that is composed of an XOR gate, a
multiplexer, and a stochastic Tanh structure can compute the max one in two uncorrelated
bitstreams. This circuit is used in the proposed stochastic Bernsen structure. A Smax has
two inputs, one of which is connected to pixel f(i,j), and the other is connected to the other
24 pixels in sequence so that M in a selected window can be computed. Pixel f(i,j) is
conveniently denoted as f1, and the remaining 24 pixels are represented as f2, f3... f25 in turn.
A Smin structure for computing N is obtained by changing the connection of 0 and 1 in the
MUX in the stochastic Tanh structure.

8 Shaowei Wang et al.

3.3.2. Mean and Difference
The mean T and the difference A between the maximum and minimum pixel values in a
selected window are respectively computed. A MUX with a fixed select input ½ can
compute the mean of two bitstreams, such as the mean of M and N is (M+N)/2. The
difference A relates to a stochastic subtraction that requires a NOT gate to implement
negation in bipolar representation. A MUX with a logically inverted input can realize the
difference between the maximum and minimum, as (M-N)/2, and bipolar format
representation is needed here. A MUX-based subtractor cannot directly compute the
difference between M and N, thus a scaled version result is adopted here.

3.3.3. Generating Output Pixel Values
This process needs to be implemented with a stochastic comparator. A stochastic
comparator22 produces less accurate bitstreams approximately representing 0 or 1, and then
the bitstreams need to be converted to binary numbers. A comparator13 has the ability to
produce more accurate results, which the results also need to be converted into binary
numbers. We propose a method that can directly output real binary pixel values, by using
the two preset parameters S and tt and considering the principle of the Bernsen algorithm.
Suppose the length of input bitstreams is 255, set S and tt to be 40 and 128 as discussed
previously. By mapping them to [0,1], they become 40/255 and 128/255, then multiplying
the length of the input bitstreams, so 40 and 128 1s can respectively be counted. If the
difference A is larger than S, that is, the number of 1s in the bitstream A is greater than 40,
the comparison result X is logically true, as shown in Fig. 5. To compare f1 and T, up/down
counter is used. The result Y indicates whether f1 is larger than T or not. Similarly, tt and T
are also compared in the same way. Therefore, the comparison results are determined by
the logical values of X, Y, and Z. Table 1 shows the truth table for the output pixel value
according to X, Y, Z. The proposed method directly converts the logical value into binary
numbers, and there is no need to convert to stochastic bitstreams. Compared with the two
stochastic comparators above, the proposed one is easy to be designed and significantly
lowers the hardware cost of the circuit.

Table 1. The truth table of output pixel value obtained by X, Y, Z

X Y Z Output

1 1 x 1
1 0 x 0
0 x 1 1
0 x 0 0

 A Low-Cost and Fault-Tolerant Stochastic Architecture for The Bernsen Algorithm 9

Fig. 6. The proposed stochastic circuit using correlated input bitstreams for the Bernsen algorithm.

3.4. The Proposed Circuit using Correlated Bitstreams

The correlation between stochastic bitstreams will affect the accuracy of stochastic circuits
so that most stochastic circuits require uncorrelated bitstreams to perform computation.
However, the appropriate use of correlation enables stochastic basic units to realize new
logic functions, which can further simplify the structures of stochastic circuits. Therefore,
in this subsection, we propose a stochastic architecture for the Bernsen algorithm by using
correlated bitstreams as shown in Fig. 6. By directly sharing an RNG, bitstreams with the
maximal correlation can be obtained, which can further reduce the hardware cost of the
stochastic circuit.

3.4.1. Maximum and Minimum
A stochastic AND gate serving as a multiplier reduces its hardware cost and simplifies
logic, compared with traditional methods to realize a multiplier. The prerequisite for that
is that its input bitstreams must be highly uncorrelated. An AND gate using correlated
inputs will result in the minimum among two inputs. An OR gate using correlated
bitstreams can get the maximum among two inputs. Hence, the maximum and minimum
pixel values M and N in a selected window can be computed by using simple logic gates in
the proposed stochastic circuit.

3.4.2. Mean and Difference
The mean T and the difference A between M and N are computed in this step. Similarly, a
MUX can implement the function of averaging M and N. It should be noted that, although
input bitstreams are generated by sharing an RNG directly in this method, a separate RNG
is provided for generating the select bitstream to ensure the MUX accurately computes the

10 Shaowei Wang et al.

average of two bitstreams. An XOR gate can realize the function C=|A-B| when the input
bitstreams have the maximum correlation. Therefore, an XOR gate is used as an absolute
value subtractor to compute the difference A between M and N in this method to implement
the Bernsen algorithm.

3.4.3. Generating Output Pixel Values
The method to generate output pixel values is the same as the proposed one using
uncorrelated bitstreams.

In summary, the output bitstreams processed by the AND gate and the OR gate still are
the original bitstreams generated by an RNG, so they have the maximum correlation.
Therefore, the XOR gate also accurately computes results. That is, the entire computing
process of this circuit from the initial inputs to the XOR gate is error-free. Consequently,
the Bernsen algorithm is suitable to be implemented by using correlated bitstreams.

4. Experiment and results

In this section, the performance of the proposed circuits will be compared and described
through different dimensions such as accuracy, hardware resource consumption, and fault
tolerance. Accuracy is described by computing the error rate of the circuit output results.
The hardware resource consumption is evaluated by comparing the area, power
consumption, latency, and other data of Bernsen circuits implemented in different ways.
The fault tolerance performance of the circuits is proved by detecting its error rate under
input noises. MATLAB and Verilog hardware description languages are used to simulate
and evaluate the accuracy of the proposed stochastic circuits. All circuits are synthesized
by Synopsys Design Compiler and TSMC 40nm standard cell library at a frequency of
100MHz and a typical corner.

Table 2. The accuracy of the conventional and stochastic circuits for the Bernsen algorithm under different
bitstream lengths (%)

Length 4-bit 5-bit 6-bit 7-bit 8-bit
Conventional 30.85 29.68 9.28 3.72 0

SC

Length 256-bit 512-bit 1024-bit 2048-bit 4096-bit

Uncorrelated

LFSR 21.90 13.52 6.97 3.93 2.20

Halton 21.74 13.50 6.91 3.89 2.19

Sobol 21.62 13.07 6.20 3.78 2.19

Length 8-bit 16-bit 32-bit 64-bit 128-bit

Correlated

LFSR 5.50 2.36 1.12 0.62 0.32

Halton 4.38 2.17 1.12 0.52 0.31

Sobol 4.33 2.01 0.71 0.38 0.15

 A Low-Cost and Fault-Tolerant Stochastic Architecture for The Bernsen Algorithm 11

4.1. Accuracy

To compare the accuracy of the proposed stochastic circuits, the average output error rate
is computed as

 , ,

1 1
100%.

H W
i j i j

i j

T E
Error

H W= =

−
= ×

⋅∑∑ (6)

where H and W represent the height and width of an image to be processed, T and E are the
theoretical results and corresponding experiment results, respectively. The conventional
circuit is simulated using 4-, 5-, 6-, 7-, 8-bit binary numbers. For stochastic circuits, LFSRs
will cause fluctuating results, so 1000 trials of the Monte Carlo experiment are simulated
and then their average is recorded. Table 2 shows the accuracy of the proposed stochastic
architectures under various lengths of bitstreams.

For most digital processing algorithms, errors less than 5% that would not be observed
by human eyes can be tolerated up for computation results.23 The data in Table 2 indicates
that the minimum precision for the conventional binary approach to achieve the acceptable
error rate is 7-bit. The stochastic design using uncorrelated inputs requires 2048-bitstreams
to make the output results acceptable. Meanwhile, the one using correlated inputs generated
with 8-bit streams can produce almost acceptable results.

The main reason for this is that the proposed stochastic circuits have different structures
for calculating the maximum and minimum values for the selected window. Specifically,
the uncorrelated method uses a Smax structure to find the maximum and minimum values
that require a longer sequence to generate results. The correlated method using an AND
gate and an OR gate achieves the same function even with more accurate results by taking
advantage of the correlation between bitstreams.

4.2. Hardware Resource Consumption

The proposed stochastic circuits are tested by synthesizing with various lengths of
bitstreams, and then compared in terms of their hardware performance to a conventional
circuit. Their area, power consumption, critical path delay, and total delay are shown in
Table 3. For the stochastic circuit using uncorrelated bitstreams, since acceptable results
are obtained when 2048-bit streams are used as input, only experimental results using
2048-bit streams are presented. The results of conventional binary circuits and other
proposed stochastic circuits are fully presented with different precisions.

Compared with the conventional 8-bit precision circuit, the LFSR-based stochastic
circuit with uncorrelated bitstreams has a 76.2% improvement in area and 75.2% in power.
The one with correlated bitstreams has a 96.5% improvement in area, 96.3% in power, and
69.5% in critical path delay when 8-bit LFSR streams are used. When 128-bit LFSRs are
used, the circuit has a 91.9% improvement in area, 92.3% in power, and 42.0% in critical
path delay. Compared with the LFSR-based design, the Halton- and Sobol-based
approaches have higher hardware overhead. The hardware resource consumption of the
correlated Sobol-based design is higher than that of the conventional 8-bit precision design.

12 Shaowei Wang et al.

Table 3. Performance comparison of the proposed stochastic circuits and conventional circuits for the Bernsen

algorithm

M
et

ho
d

Length
(bit)

Area
(um2)

Power
(uW)

Critical
path
delay
(ns)

Delay
(ns)

ADP
(um2×ns)

PDP
(10-3 pJ)

C
on

ve
nt

io
na

l 4 1368.51 116.64 0.94 0.94 1286.40 109.64

5 1745.12 137.68 0.95 0.95 1657.86 130.80

6 2127.91 161.18 1.05 1.05 2234.31 169.24

7 2490.42 180.39 1.13 1.13 2814.17 203.84

8 2865.27 196.24 1.31 1.31 3,753.50 257.07

U
nc

or
re

l
at

ed
 LFSR 2048 680.73 48.69 1.64 24×1.64×211 54873155.28 3924865.84

Halton 2048 2105.51 117.11 2.45 24×2.45×211 253550567.42 14102667.26

Sobol 2048 3233.59 349.20 2.85 24×2.85×211 452971634.69 48917053.44

C
or

re
la

te
d

LFSR

8 101.07 7.30 0.40 0.40×23 323.42 23.36

16 134.24 9.33 0.48 0.48×24 1030.96 71.65

32 166.17 11.90 0.58 0.58×25 3084.12 220.86

64 206.04 13.83 0.65 0.65×26 8571.26 575.33

128 231.96 15.13 0.76 0.76×27 22565.07 1471.85

Halton

8 289.83 31.72 0.67 0.67×23 1553.49 170.02

16 400.43 34.99 0.78 0.78×24 4997.37 436.68

32 551.78 39.61 1.05 1.05×25 18539.81 1330.90

64 637.33 41.38 1.19 1.19×26 48539.05 3151.50

128 821.14 45.81 1.45 1.45×27 152403.58 8502.34

Sobol

8 339.46 37.81 0.67 0.67×23 1819.51 202.66

16 491.98 49.37 0.79 0.79×24 6218.63 624.04

32 683.55 63.12 0.89 0.89×25 19467.50 1797.66

64 886.23 79.94 1.23 1.23×26 69764.03 6292.88

128 1102.15 98.50 1.74 1.74×27 245470.85 21937.92

Table 4. The average output error of the proposed and conventional circuits versus injected noise levels (%)

Noise Levels Length 0 2 5 10 15 20 30

Conventional - 0.0 26.19 35.70 38.19 39.39 40.88 43.09

Uncorrelated 2048-bit 3.9 4.1 4.2 4.3 4.7 6.6 14.1

Correlated

8-bit 5.5 5.5 5.5 9.9 10.2 10.3 25.6
16-bit 2.4 2.4 4.6 6.8 7.1 8.9 20.4
32-bit 1.1 1.6 4.4 5.0 6.8 7.8 10.6
64-bit 0.6 1.3 2.7 4.6 5.8 7.2 9.2
128-bit 0.3 1.0 2.2 4.4 5.6 6.7 8.5

 A Low-Cost and Fault-Tolerant Stochastic Architecture for The Bernsen Algorithm 13

Fig. 7. Fault-tolerance comparison of the proposed stochastic circuits and conventional circuits for the Bernsen
algorithm.

14 Shaowei Wang et al.

Since stochastic circuits require long bitstreams, their delay is larger than that of the
conventional circuit. As shown in Table 3, Area Delay Product (ADP), and Power Delay
Product (PDP) of the aforementioned three types of circuits are compared. The proposed
LFSR-based stochastic circuit using correlated bitstreams enjoys lower ADP, and PDP than
the conventional one until 64-bit streams are used. However, the circuit designed with
uncorrelated inputs has a much higher energy consumption compared to its corresponding
binary circuit. The comparison of the two proposed circuits for the Bernsen algorithms
indicates that the correlation should be paid more attention to circuit design. Speaking
cautiously, these results, again, illustrate that the circuit designed using correlated
bitstreams is more suitable for implementing the Bernsen algorithm.

4.3. Fault Tolerance

Soft errors can be approximated by flipping input bits independently and randomly. For
example, if a length of 1000-bitstream is injected for 5% noise, then 50 bits are randomly
selected and flipped. By injecting different error rates into input bitstreams in this way to
evaluate the fault tolerance of the proposed stochastic architectures. As the data shown in
Table 2, the accuracy of the LFSR-based approach is slightly inferior to that of the other
two SC approaches. However, it has advantages in hardware overhead. The 8-bit precision
conventional design and LFSR-based design are compared, and the processed images are
shown in Fig. 7. The results dealing with different noise levels are numerically shown in
Table 4. It can be seen that the proposed stochastic circuits have better fault tolerance than
the conventional circuit.

5. Conclusion

In this paper, two stochastic architectures are proposed for implementing the Bernsen
algorithm, and these circuits are evaluated through hardware implementations and
computing accuracy. A new method to generate output pixel values and concurrently
convert them to binary values is also proposed to effectively reduce the resource
consumption of the proposed stochastic circuits. Experimental results show that the
proposed stochastic circuits outperform their conventional binary circuits in terms of area
and fault tolerance. Specifically, the one using uncorrelated input bitstreams has low
performance in energy efficiency, while the one using correlated input bitstreams produces
higher accuracy and lower hardware costs. It demonstrates that simpler and more efficient
stochastic circuits can be designed by using correlated bitstreams for certain logic functions.
In future work, we will further explore the impact of bitstream correlation on SC.

Acknowledgment

This work was supported by the Fundamental Research Funds for the Central Universities
of China (Grant No. JZ2020HGQA0162, No. JZ2020HGTA0085), and by the Natural
Sciences and Engineering Research Council (NSERC) of Canada (Project Number:
RES0048688).

 A Low-Cost and Fault-Tolerant Stochastic Architecture for The Bernsen Algorithm 15

References

1. 1. M. Villegas, V. Romero, and J. Andreu Sanchez, On the modification of binarization
algorithms to retain grayscale information for handwritten text recognition, eds. R. Paredes, J.
S. Cardoso and X. M. Pardo, 2015), 208-215.

2. 2. Y. Chen, D. Chen, Y. Li, and L. Chen, “Otsu's thresholding method based on gray level-
gradient two-dimensional histogram,” in 2010 2nd International Asia Conference on
Informatics in Control, Automation and Robotics, Wuhan, China, 2010, pp. 282-285.

3. 3. J. Bersen, “Dynamic thresholding of grey-level images,” in Eighth International
Conference on Pattern Recognition, Paris, France, 1986, pp. 1251-5.

4. 4. O. Samorodova, and A. Samorodov, Fast implementation of the Niblack binarization
algorithm for microscope image segmentation, Pattern Recognit Image Anal. 26 (2016) 548-51.

5. 5. S. Lokhande, and N. Dawande, “A survey on document image binarization techniques,” in
1st International Conference on Computing Communication Control and Automation, Pune,
India, 2015, pp. 742-746.

6. 6. S. P. J. V. Rani, J. R. L. Jennifer, and P. Sudhanya, Approximate multipliers design using
approximate adders for image processing applications, Journal of Circuits, Systems, and
Computers. 31 (2022) 2250256.

7. 7. Sakali Raghavendra Kumar, P Balasubramanian, Ramesh Reddy, Sreehari
Veeramachaneni, and N. M. Sk, Optimized fault-tolerant adder design using error analysis,
Journal of Circuits, Systems, and Computers. 32 (2023) 2350091.

8. 8. M. Alawad, and M. Lin, Survey of stochastic-based computation paradigms, IEEE Trans.
Emerging Top. Comput. 7 (2019) 98-114.

9. 9. S. I. Chu, C. L. Wu, T. N. Nguyen, and B. H. Liu, Polynomial computation using unipolar
stochastic logic and correlation technique, IEEE Trans. Comput. (2021) 1-1.

10. 10. N. Onizawa, and T. Hanyu, Cmos invertible logic: Bidirectional operation based on the
probabilistic device model and stochastic computing, IEEE Nanatechnol. Mag. 16 (2022) 33-
46.

11. 11. A. Alaghi, W. Qian, and J. Hayes, The promise and challenge of stochastic computing,
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37 (2018) 1515-1531.

12. 12. P. Li, and J. Lilja, “A low power fault-tolerance architecture for the kernel density
estimation based image segmentation algorithm,” in the IEEE International Conference on
Application-specific Systems, Architectures and Processors, Santa Monica, CA, USA, 2011, pp.
161-168.

13. 13. M. Najafi, and M. Salehi, A fast fault-tolerant architecture for sauvola local image
thresholding algorithm using stochastic computing, IEEE Trans. Very Large Scale Integr. VLSI
Syst. 24 (2016) 808-812.

14. 14. Z. Lin, G. Xie, W. Xu, J. Han, and Y. Zhang, Accelerating stochastic computing using
deterministic Halton sequences, IEEE Trans. Circuits Syst. II Express Briefs. 68 (2021) 3351-
3355.

15. 15. Y. Zhang, S. Liu, J. Han, Z. Lin, S. Wang, X. Cheng, and G. Xie, An energy-efficient
binary-interfaced stochastic multiplier using parallel datapaths, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems. (2023) 1 - 5.

16. 16. M. A. Hedayatpour, M. A. Karami, and J. Shamsi, Implementation of izhikevich neuron
based on stochastic computing using a novel inspired omega‐flip stochastic number generator,
International Journal of Circuit Theory and Applications. (2022)

17. 17. S.-I. Chu, C.-L. Wu, T. N. Nguyen, and B.-H. Liu, Polynomial computation using unipolar
stochastic logic and correlation technique, IEEE Transactions on Computers. 71 (2021) 1358 -
1373.

16 Shaowei Wang et al.

18. 18. S. Wang, G. Xie, X. Cheng, and Y. Zhang, Weighted-adder based polynomial computation

using correlated unipolar stochastic bitstreams, IEEE Transactions on Circuits and Systems II:
Express Briefs. 69 (2022) 4528-4532.

19. 19. S. Liu, and J. Han, Toward energy-efficient stochastic circuits using parallel sobol
sequences, IEEE Trans. Very Large Scale Integr. VLSI Syst. 26 (2018) 1326-1339.

20. 20. A. Alaghi, and J. Hayes, “Fast and accurate computation using stochastic circuits,” in the
2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,
Germany, 2014, pp. 1-4.

21. 21. J. Yu, K. Kim, J. Lee, and K. Choi, “Accurate and efficient stochastic computing hardware
for convolutional neural networks,” in 2017 IEEE International Conference on Computer
Design (ICCD), Boston, MA, USA, 2017, pp. 105-112.

22. 22. P. Li, and D. Lilja, “Using stochastic computing to implement digital image processing
algorithms,” in the 2011 IEEE 29th International Conference on Computer Design (ICCD),
Amherst, MA, USA, 2011, pp. 154-161.

23. 23. P. Li, and D. Lilja, “Accelerating the performance of stochastic encoding-based
computations by sharing bits in consecutive bit streams,” in the Proceedings of the 2013 IEEE
24th International Conference on Application-Specific Systems, Architectures and Processors,
New York, 2013, pp. 257-260.

